• info@parsalandco.com
  • +989124000464
  • +989127093613
  • Home
  • Startups
  • Departments
    • Application Software Department
    • Architecture Department
    • Construction Department
    • Cryptocurrency Department
    • Decoration Department
    • Digital Investment Department
    • E-Commerce Department
    • Electronic Department
    • Energy Saving Department
    • Health Department
    • IOT Department
    • Mechanical Department
  • Top Projects
    • Green Power Generator
    • Green Marketing
    • Smart Animal Husbandry
  • Blog
  • about us
    • Ethics charter
Menu
  • Home
  • Startups
  • Departments
    • Application Software Department
    • Architecture Department
    • Construction Department
    • Cryptocurrency Department
    • Decoration Department
    • Digital Investment Department
    • E-Commerce Department
    • Electronic Department
    • Energy Saving Department
    • Health Department
    • IOT Department
    • Mechanical Department
  • Top Projects
    • Green Power Generator
    • Green Marketing
    • Smart Animal Husbandry
  • Blog
  • about us
    • Ethics charter

ROBOTICS OVERVIEW

Home » Blog » ROBOTICS OVERVIEW

Bitcoin is decentralized
July 24, 2023
EXAMPLES OF ROBOTICS
July 30, 2023
July 30, 2023
Categories
  • Digital Investment
  • English language
  • Mechanical
Tags
  • #ROBOTICS OVERVIEW

1.Introduction

A robot is a programmable machine that can complete a task, while the term robotics describes the field of study focused on developing robots and automation. Each robot has a different level of autonomy. These levels range from human-controlled bots that carry out tasks to fully-autonomous bots that perform tasks without any external influences.

As technology progresses, so too does the scope of what is considered robotics. In 2005, 90 percent of all robots could be found assembling cars in automotive factories. These robots consist mainly of mechanical arms tasked with welding or screwing on certain parts of a car. 

Today, we’re seeing an evolved and expanded definition of robotics that includes the development, creation and use of bots that accomplish tasks like exploring the planet’s harshest conditions, assisting law enforcement,  streamlining surgical procedures and undertaking rescue missions.

2.Robotics Defined

While the overall world of robotics is expanding, a robot has some consistent characteristics:

  1. Robots consist of some sort of mechanical construction. The mechanical aspect of a robot helps it complete tasks in the environment for which it’s designed. For example, the Mars 2020 Rover’s wheels are individually motorized and made of titanium tubing that help it firmly grip the harsh terrain of the red planet.
  2. Robots need electrical components that control and power the machinery. Essentially, an electric current — a battery, for example — is needed to power a large majority of robots.
  3. Robots contain at least some level of computer programming. Without a set of code telling it what to do, a robot would just be another piece of simple machinery. Inserting a program into a robot gives it the ability to know when and how to carry out a task.

We’re bound to see the promise of the robotics industry sooner, rather than later, as artificial intelligence and software also continue to progress. In the near future, thanks to advances in these technologies, robots will continue getting smarter, more flexible and more energy efficient. They’ll also continue to be a main focal point in smart factories, where they’ll take on more difficult challenges and help to secure global supply chains.

The robotics industry is filled with an admirable promise of progress that science fiction could once only dream about. From the deepest depths of our oceans to thousands of miles in outer space, robots will be found performing tasks that humans couldn’t dream of achieving alone.

Robot Etymology

The word robot is derived from the Czech word robota, which means “forced labor.” The word first appeared in the 1920 play R.U.R., in reference to the play’s characters who were mass-produced workers incapable of creative thinking.

Types of Robotics

Mechanical bots come in all shapes and sizes to efficiently carry out the task for which they are designed. All robots vary in design, functionality and degree of autonomy. From the 0.2 millimeter-long “RoboBee” to the 200 meter-long robotic shipping vessel “Vindskip,” robots are emerging to carry out tasks that humans simply can’t. 

There are five distinct types of robots that perform tasks depending on their capabilities. Below is an outline of these types and what they do.


Pre-Programmed Robots

Pre-programmed robots operate in a controlled environment where they do simple, monotonous tasks. An example of a pre-programmed robot would be a mechanical arm on an automotive assembly line. The arm serves one function — to weld a door on, to insert a certain part into the engine, etc. — and its job is to perform that task longer, faster and more efficiently than a human.


Humanoid Robots

Humanoid robots are robots that look like or mimic human behavior. These robots usually perform human-like activities (like running, jumping and carrying objects), and are sometimes designed to look like us, even having human faces and expressions. Two of the most prominent examples of humanoid robots are Hanson Robotics’ Sophia and Boston Dynamics’ Atlas.

Autonomous Robots

Autonomous robots operate independently of human operators. These robots are usually designed to carry out tasks in open environments that do not require human supervision. They are quite unique because they use sensors to perceive the world around them, and then employ decision-making structures (usually a computer) to take the optimal next step based on their data and mission. One example of an autonomous robot is the Roomba vacuum cleaner, which uses sensors to roam freely throughout a home.

EXAMPLES OF AUTONOMOUS ROBOTS

  • Cleaning Bots (for example, Roomba)
  • Lawn Trimming Bots
  • Hospitality Bots
  • Autonomous Drones
  • Medical Assistant Bots

 
Teleoperated Robots

Teleoperated robots are semi-autonomous bots that use a wireless network to enable human control from a safe distance. These robots usually work in extreme geographical conditions, weather and circumstances. Examples of teleoperated robots are the human-controlled submarines used to fix underwater pipe leaks during the BP oil spill or drones used to detect landmines on a battlefield.


Augmenting Robots

Augmenting robots, also known as VR robots, either enhance current human capabilities or replace the capabilities a human may have lost. The field of robotics for human augmentation is a field where science fiction could become reality very soon, with bots that have the ability to redefine the definition of humanity by making humans faster and stronger. Some examples of current augmenting robots are robotic prosthetic limbs or exoskeletons used to lift hefty weights.

What Is a Bot? What Is Software Robotics?

Software robotics, also called bots, are computer programs which carry out tasks autonomously. One common use case of software robots is a chatbot. A chatbot is a computer program that simulates conversation both online and over the phone and is often used in customer service scenarios. Chatbots can either be simple services that answer questions with an automated response or more complex digital assistants that learn from user information.

3.TYPES OF BOTS

  • Chatbots: carry out simple conversations, often in a customer service setting.
  • Spam Bots: collect email addresses and send spam mail.
  • Download Bots: download software and apps automatically.
  • Search Engine Crawler Bots: scan websites and make them visible on search engines.
  • Monitoring Bots: report on website speed and status.

Software robots only exist on the internet and originate within a computer, which means they are not considered robots. In order to be considered a robot, a device must have a physical form, such as a body or a chassis.

4.How Do Robots Function?

Independent Robots

Independent robots are capable of functioning completely autonomously and independent of human operator control. These typically require more intense programming but allow robots to take the place of humans when undertaking dangerous, mundane or otherwise impossible tasks, from bomb diffusion and deep-sea travel to factory automation. Independent robots have proven to be the most disruptive to society, as they eliminate certain jobs but also present new possibilities for growth.

Dependent Robots

Dependent robots are non-autonomous robots that interact with humans to enhance and supplement their already existing actions. This is a relatively new form of technology and is being constantly expanded into new applications, but one form of dependent robots that has been realized is advanced prosthetics that are controlled by the human mind. 

A famous example of a dependent robot was created by Johns Hopkins APL in 2018 for Johnny Matheny, a patient whose arm was amputated above the elbow. Matheny was fitted with a modular prosthetic limb so researchers could study its use over a sustained period. The MPL is controlled via electromyography, or signals sent from his amputated limb that controls the prosthesis. Over time, Matheny became more efficient in controlling the MPL and the signals sent from his amputated limb became smaller and less variable, leading to more accuracy in its movements and allowing Matheny to perform tasks as delicate as playing the piano.

What Are the Main Components of a Robot?

Robots are built to present solutions to a variety of needs and fulfill several different purposes, and therefore, require a variety of specialized components to complete these tasks.

5.WHAT ARE THE MAIN COMPONENTS OF A ROBOT?

  • Control System: the CPU that directs a robot’s task at high level.
  • Sensors: a component that provides electrical signals to allow a robot to interact with the world.
  • Actuators: the motor parts that are responsible for a robot’s movement.
  • Power Supply: the battery that supplies power to a robot.
  • End Effectors: the exterior features of a robot that allow it to complete a task.

However, there are several components that are central to every robot’s construction, like a power source or a central processing unit. Generally speaking, robotics components fall into these five categories:

Control System

Computation includes all of the components that make up a robot’s central processing unit, often referred to as its control system. Control systems are programmed to tell a robot how to utilize its specific components, similar in some ways to how the human brain sends signals throughout the body, in order to complete a specific task. These robotic tasks could comprise anything from minimally invasive surgery to assembly line packing.

Sensors

Sensors provide a robot with stimuli in the form of electrical signals that are processed by the controller and allow the robot to interact with the outside world. Common sensors found within robots include video cameras that function as eyes, photoresistors that react to light and microphones that operate like ears. These sensors allow the robot to capture its surroundings and process the most logical conclusion based on the current moment and allows the controller to relay commands to the additional components.

Actuators

A device can only be considered to be a robot if it has a movable frame or body. Actuators are the components that are responsible for this movement. These components are made up of motors that receive signals from the control system and move in tandem to carry out the movement necessary to complete the assigned task. Actuators can be made of a variety of materials, such as metal or elastic, and are commonly operated by use of compressed air (pneumatic actuators) or oil (hydraulic actuators) but come in a variety of formats to best fulfill their specialized roles.

Power Supply

Like the human body requires food in order to function, robots require power. Stationary robots, such as those found in a factory, may run on AC power through a wall outlet but more commonly, robots operate via an internal battery. Most robots utilize lead-acid batteries for their safe qualities and long shelf life while others may utilize the more compact but also more expensive silver-cadmium variety. Safety, weight, replaceability and lifecycle are all important factors to consider when designing a robot’s power supply. 

Some potential power sources for future robotic development also include pneumatic power from compressed gasses, solar power, hydraulic power, flywheel energy storage organic garbage through anaerobic digestion and nuclear power.

End Effectors

End effectors are the physical, typically external components that allow robots to finish carrying out their tasks. Robots in factories often have interchangeable tools like paint sprayers and drills, surgical robots may be equipped with scalpels and other kinds of robots can be built with gripping claws or even hands for tasks like deliveries, packing, bomb diffusion and much more.

source : builtin _ opengovasia

Related Post

  • Neuralink brain chip
  • Theta Network
  • Electra Hydrofoil Ferry
  • xpeng x2
  • 3D Printing
  • Piazza Dell’Ufficio
  • Istanbul New Airport
  • Autonomous delivery robots starship
Share
1
Niloofar Naghdi
Niloofar Naghdi

Related posts

August 5, 2023

higher-end Roombas


Read more
August 5, 2023

Robot Vacuums new


Read more
August 5, 2023

The Best Robot Vacuums


Read more
July 31, 2023

The Top Humanoid Robots


Read more

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

About Us

Parsaland Trading Company with many activities in the fields of import and export, investment consulting, blockchain consulting, information technology and building construction

Departments

  • Application Software
  • Architecture
  • Construction
  • Cryptocurrency
  • Decoration
  • E-Commerce
  • Electronic
  • Energy Saving
  • Health
  • IOT
  • Mechanical

Quick Link

  • Home
  • Startups
  • Blog
  • About Us

Contact Us

  • +989124000464
  • +989127093613
  • info@parsalandco.com
  • parsalandco-company
  • parsalandco_com
  • parsalandco_com