Machine-learning system accelerates discovery of new materials for 3D printing
The growing popularity of 3D printing for manufacturing all sorts of items, from customized medical devices to affordable homes, has created more demand for new 3D printing materials designed for very specific uses.
To cut down on the time it takes to discover these new materials, researchers at MIT have developed a data-driven process that uses machine learning to optimize new 3D printing materials with multiple characteristics, like toughness and compression strength.
By streamlining materials development, the system lowers costs and lessens the environmental impact by reducing the amount of chemical waste. The machine learning algorithm could also spur innovation by suggesting unique chemical formulations that human intuition might miss.”Materials development is still very much a manual process. A chemist goes into a lab, mixes ingredients by hand, makes samples, tests them, and comes to a final formulation
Additional authors include co-lead author Timothy Erps, a technical associate in CDFG; Mina Konaković Luković, a CSAIL postdoc; Wan Shou, a former MIT postdoc who is now an assistant professor at the University of Arkansas; senior author Wojciech Matusik, professor of electrical engineering and computer science at MIT; and Hanns Hagen Geotzke, Herve Dietsch, and Klaus Stoll of BASF.
Optimizing discovery
In the system the researchers developed, an optimization algorithm performs much of the trial-and-error discovery process.
A material developer selects a few ingredients, inputs details on their chemical compositions into the algorithm, and defines the mechanical properties the new material should have. Then the algorithm increases and decreases the amounts of those components (like turning knobs on an amplifier) and checks how each formula affects the material’s properties, before arriving at the ideal combination.
Then the developer mixes, processes, and tests that sample to find out how the material actually performs. The developer reports the results to the algorithm, which automatically learns from the experiment and uses the new information to decide on another formulation to test.
Faster in the future
The process could be accelerated even more through the use of additional automation. Researchers mixed and tested each sample by hand, but robots could operate the dispensing and mixing systems in future versions of the system, Foshey says.
Farther down the road, the researchers would also like to test this data-driven discovery process for uses beyond developing new 3D printing inks
source:phys.org
Parsaland Trading Company with many activities in the fields of import and export, investment consulting, blockchain consulting, information technology and building construction